General Approach to the Synthesis of Marine Bryozoan *Flustra foliacea* Alkaloids: Total Syntheses of Debromoflustramines A and B

Martha S. Morales-Ríos, Oscar R. Suárez-Castillo, and Pedro Joseph-Nathan*

Departamento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politéctico Nacional, Apartado 14-740, México D. F. 07000, Mexico

Received October 19, 1998

Debromoflustramine B (1) is an indole alkaloid isolated from the marine bryozoan *Flustra foliacea* together with a closely related group of brominated indoles, most of which display interesting biological activity.¹ These alkaloids have in common the basic physostigmine skeleton known from the minor group of terrestrial alkaloids from Calabar bean (*Physostigma venenosum* Balf), and some of them have one or two prenyl or inverted prenyl units at the 8 and/or 3a positions as shown below.

/
$R^1 = R^2 = -$, $R^3 = H$, $X = H$, H Debromoflustramine B (1)
$R^1 = R^2 = \frac{\sqrt{-1}}{\sqrt{-1}}$, $R^3 = Br$, $X = H$, H Flustramine B
$R^1 = -$, $R^2 = -$, $R^3 = Br$, $X = H$, H Flustramine A
$R^1 = -$, $R^2 = -$, $R^3 = Br$, $X = O$ Flustramide A
$R^1 = H$, $R^2 = -\sqrt{-1}$, $R^3 = Br$, $X = H$, H Flustramine E
$R^1 = H$, $R^2 = -$, $R^3 = Br$, $X = H$, H Dihydroflustramine C

A diastereoselective synthesis of debromoflustramine B (1) starting from a cyclic tautomer of L-tryptophan has appeared previously.² Racemic syntheses of 1 have also been reported involving alkylation at C3 of tryptamine derivatives.³ Another approach to 1 involves a six-step sequence starting from 1-methoxyindole-3-carbaldehyde, in an overall yield of 4.4%.⁴ Despite the above synthetic methods, there exists a need to develop more efficient and versatile procedures to this and other related compounds. Recently, we have shown the Grignard reagent addition to 2-hydroxy-indolenines as a useful method for introducing an alkyl group at the C3 position of the indole nucleus.⁵ In this paper, we describe our preliminary results regarding the synthesis of debromoflustramine B (1), which also resulted in the syntheses of related derivatives debromoflustramine A (2)

⁽⁴⁾ Somei, M.; Yamada, F.; Izumi, T.; Nakajou, M. *Heterocycles* **1997**, *45*, 2327–2330.

and debromoflustramide A (**3**) via the conjugated addition of the Grignard reagent derived from prenyl bromide to 2-hydroxyindolenines. This method represents a new and general approach for the synthesis of 3a-alkylhexahydropyrrolo[2,3-*b*]indole-type alkaloids according to the strategy outlined in Scheme 1.

In the first step (Scheme 1), the Grignard reagent addition to 2-hydroxyindolenines 4^6 provides ready access to a range of functionalized 2-oxofuro[2,3-*b*]indoles **5** and **6**. Of the different reaction conditions examined, the highest yield for compounds **5** and **6** was obtained at low temperature (-78 °C, Table 1). Typically, when the 2-hydroxyindolenine **4a** was stirred with an excess (4 equiv) of an equilibrating mixture⁷ of prenylmagnesium bromide (3-methyl-2-butenylmagnesium bromide) and its 1,1-dimethylallyl isomer (2methyl-3-buten-2-yl) at -78 °C in anhydrous THF/ether, the products of the 1,4-addition, the prenylated 2-oxofuro[2,3*b*]indole **5a** (mixture of endo/exo isomers as determined by

^{*} To whom correspondence should be addressed. Tel: (525) 747-7112. Fax: (525) 747-7113. E-mail: pjoseph@nathan.chem.cinvestav.mx. (1) (a) Christophersen, C. *Acta Chem. Scand. B* **1985**, *39*, 517-529. (b)

^{(1) (}a) Christophersen, C. Acta Chem. Scand. B 1985, 39, 517–529. (b) Holst, P. B.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. J. Nat. Prod. 1994, 57, 997–1000.

 ⁽²⁾ Bruncko, M.; Crich, D.; Samy, R. J. Org. Chem. 1994, 59, 5543-5549.
 (3) (a) Hino, T.; Tanaka, T.; Matsuki, K.; Nakagawa, M. Chem. Pharm. Bull. 1983, 31, 1806-1808.
 (b) Muthusubramanian, P.; Carlé, J. S.; Christophersen, C. Acta Chem. Scand. B 1983, 37, 803-807.

⁽⁶⁾ Compounds 4 were prepared in good overall yields by treatment of the appropriately substituted 3-acetonitrilindole with an alkyl carbonate in basic medium, followed by oxidation with either HNO₃/AcOH or CrO₃/AcOH. See: (a) Reference 5. (b) Morales-Ríos, M. S.; Bucio, M. A.; Joseph-Nathan, P. *J. Heterocycl. Chem.* **1993**, *30*, 953–956.

^{(7) (}a) Whitesides, G. M.; Nordlander, J. E.; Roberts, J. D. *Discussions Faraday Soc.* **1962**, *34*, 185–190. (b) Benkeser, R. A. *Synthesis* **1971**, 347–358.

 Table 1. Regioselectivity and Yields for the Formation of 2-Oxofuro[2,3-b]indoles 5 and 6^a

Entry	Substrate	Temp. °C	Products	Yield %
1.	R ¹ = H, 4a	0	$\mathbf{R}^2 = -\sqrt{-1}$, 5a	21 ^b
			$R^2 = -\langle n \rangle$, 6a	26 ^c
2.	R ¹ = H, 4a	-78	$R^2 = -\sqrt{-1}$, 5a	32 ^b
			$\mathbf{R}^2 = - \langle \mathbf{N} \rangle$, 6a	48 ^c
3.	$\mathbf{R}^1 = \mathbf{Br}, \mathbf{4b}$	0	$R^2 = \sqrt{-4}$, 5b	23 ^b
			$R^2 = -\langle n \rangle$, 6b	40 ^c
4.	$\mathbf{R}^1 = \mathbf{Br}, \mathbf{4b}$	-78	$R^2 = - / = / , 5b$	24 ^{<i>b</i>}
			$R^2 = -\langle n \rangle$, 6b	44 ^c

^a Reactions were carried out on a 3.5 mmol scale. ^b Mixture of endo/exo isomers by ¹H NMR. ^c Only endo isomer.

¹H NMR) and the 1,1-dimethylallyl isomer **6a** (only endo isomer), were obtained in a combined yield of 77% in a ratio of 40 (**5a**):60 (**6a**). The dependence of the C3/C3a endo/exo ratios on the alkyl group at C3a, observed in the reaction products, evidence that the lactone stereochemistry is set upon ring closure of the initially alkylated γ -hydroxy esters, whereas the preferred cis-5,5-fused system formation depends on the ring-chain tautomeric equilibrium of the hemiaminal group.^{8,9}

To further illustrate the viability of this reaction as a practical strategy for the synthesis of brominated indole alkaloids, we have explored the reaction of the brominated 2-hydroxyindolenine **4b** with prenylmagnesium bromide. Our best results to date afforded the C3a-alkylated 2-oxofuroindoles **5b** (mixture of endo/exo isomers) and **6b** (endo isomer) in a combined yield of 68% in a ratio of 35 (**5b**):65 (**6b**) (Table 1).

Hydrolytic decyanation of the α -cyano γ -lactones **5a** and **6a** was conducted in refluxing THF, in the presence of wet alumina, to afford the corresponding γ -lactones **7** and **8** in 86% and 95% yield, respectively. No intermediates were detected during the reactions. Taking into account the high effectivity and the operationally simple procedure of this transformation, we propose a mechanism involving two successive pseudopericyclic [4 + 2] hydration processes,^{10,11} as shown below. The initially produced tautomeric α -ketenimine- γ -lactone **A** can be hydrated to form amide **B** via a planar [4 + 2] pseudopericyclic transition structure. The facile loss of ammonia from **B** to give α -ketone γ -lactone **C** is in line with theoretical studies of a reverse transformation, namely the addition of ammonia to formylketene.¹² The reactive intermediate¹³ **C** may undergo a further [4 + 2]

(11) (a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 4325–4327.
 (b) Wagenseller, P. E.; Birney, D. M.; Roy, D. J. Org. Chem. 1995, 60, 2853–2859.
 (c) Ham, S.; Birney, D. M. J. Org. Chem. 1996, 61, 243–251.

hydration¹⁴ to afford the corresponding carboxylic acid **D**, which after subsequent decarboxylation leads cleanly γ -lactones **7** and **8**.

Treatment of γ -lactone **8** with methylamine at room temperature afforded the γ -hydroxyamide **12**,

which by heating in methanol to reflux gave back γ -lactone **8**.¹⁵ To overcome this difficulty, we examined the possibility of introducing the N₈ prenyl group in the synthetic sequence before transforming the lactone into the lactam. Thus, the electron-withdrawing substituent N-CO₂Me in compounds 7 and 8 was replaced by an *N*-prenyl group by treatment with MeONa/MeOH and concomitant alkylation with prenyl bromide. Under these conditions, the N-prenylated 2-oxofuroindoles 9 and 10 were obtained in 70% and 60% overall yield, respectively. As expected, the addition of methylamine to 9 in MeOH gave the desired lactam 11 in 92% isolated yield. Similar results were obtained upon addition of methylamine to 10. Debromoflustramide A (3) was isolated in 98% yield and further reduced with LiAlH₄ in refluxing THF to give debromoflustramine A (2) in 98% isolated yield. Reaction of **11** with LiAlH₄ under similar conditions gave debromoflustramine B (1) in 98% isolated yield. The spectral properties of **1** are identical (IR, ¹H and ¹³C NMR, EIMS) to those reported for the marine natural product debromoflustramine B except for the optical activity.^{1b,2}

In summary, the steps described in Scheme 1 allow a straightforward synthesis of debromoflustramine B (1) and provide a widely potential route to a variety of marine *F. foliacea* alkaloids carrying the basic physostigmine skeleton.

Acknowledgment. This research was supported in part by CONACYT (Mexico). We thank I. Q. Luis Velasco Ibarra (Instituto de Química, UNAM) for HRMS.

Supporting Information Available: Detailed experimental procedures and ¹H and ¹³C NMR spectra for compound characterization.

JO982090K

⁽¹²⁾ Birney, D. M.; Xu, X.; Ham, S.; Huang, X. J. Org. Chem. **1997**, 62, 7114–7120.

^{(13) (}a) Klumpp, G. W. In *Reactivity in Organic Chemistry*; Wiley: New York, 1982; pp 41–42. (b) Schwarzenbach, H.; Suter, H.; Lutz, K. *Helv. Chim. Acta* **1940**, *23*, 1191–1197.

^{(14) (}a) Buss, M.; Mayer, A.; Müller, K.; Meier, H. *Liebigs Ann. Chem.* **1996**, 1223–1229. (b) Meier, H.; Wengenroth, H.; Lauer, W.; Vogt, W. *Chem. Ber.* **1988**, *121*, 1643–1646.

⁽¹⁵⁾ Similar observations have been reported before: (a) Wijnberg, J. B. P. A.; Speckamp, W. N. *Tetrahedron* **1978**, *34*, 2399–2404. (b) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am. Chem. Soc. **1992**, *114*, 5566–5572.